Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Malaysian Journal of Fundamental and Applied Sciences ; 18(6):654-673, 2022.
Article in English | Web of Science | ID: covidwho-2309052

ABSTRACT

During the SARS-CoV-2 (Covid-19) pandemic, credit applications skyrocketed unimaginably. Thus, creditors or financial entities were burdened with information overload to ensure they provided the proper credit to the right person. The existing methods employed by financial entities were prone to overfitting and did not provide any information regarding the behavior of the creditor. However, the outcome did not consider the attribute of the creditor that led to the default outcome. In this paper, a swarm intelligence-based algorithm named Artificial Bee Colony has been implemented to optimize the learning phase of the Hopfield Neural Network with 2 Satisfiability-based Reverse Analysis Methods. The proposed hybrid model will be used to extract logical information in the credit data with more than 80% accuracy compared to the existing method. The effectiveness of the proposed hybrid model was evaluated and showed superior results compared to other models.

2.
International Journal of Information Engineering and Electronic Business ; 14(1):1, 2021.
Article in English | ProQuest Central | ID: covidwho-2300239

ABSTRACT

In early 2020, the world was shocked by the outbreak of COVID-19. World Health Organization (WHO) urged people to stay indoors to avoid the risk of infection. Thus, more people started to shop online, significantly increasing the number of e-commerce users. After some time, users noticed that a few irresponsible online retailers misled customers by hiking product prices before and during the sale, then applying huge discounts. Unfortunately, the "discounted” prices were found to be similar or only slightly lower than standard pricing. This problem occurs because users were unable to monitor product pricing due to time restrictions. This study proposes a Web application named PriceCop to help customers' monitor product pricing. PriceCop is a significant application because it offers price prediction features to help users analyse product pricing within the next day;thus, it can help users to plan before making purchases. The price prediction model is developed by using Linear Regression (LR) technique. LR is commonly used to determine outcomes and used as predictors. Least Squares Support Vector Machine (LSSVM) and Artificial Bee Colony (ABC) are used as a comparison to evaluate the accuracy of the LR technique. LSSVM-ABC was initially proposed for stock market price predictions. The results show the accuracy of pricing prediction using LSSVM-ABC is 84%, while it is 62% when LR is employed. ABC is integrated into SVM to optimize the solution and is responsible for the best solution in every iteration. Even though LSSVM-ABC predicts product pricing more accurately than LR, this technique is best trained using at least a year's worth of product prices, and the data is limited for this purpose. In the future, the dataset can be collected daily and trained for accuracy.

3.
Comput Biol Med ; 153: 106520, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2306565

ABSTRACT

Feature selection (FS) is a popular data pre-processing technique in machine learning to extract the optimal features to maintain or increase the classification accuracy of the dataset, which is a combinatorial optimization problem, requiring a powerful optimizer to obtain the optimum subset. The equilibrium optimizer (EO) is a recent physical-based metaheuristic algorithm with good performance for various optimization problems, but it may encounter premature or the local convergence in feature selection. This work presents a self-adaptive quantum EO with artificial bee colony for feature selection, named SQEOABC. In the proposed algorithm, the quantum theory and the self-adaptive mechanism are employed into the updating rule of EO to enhance convergence, and the updating mechanism from the artificial bee colony is also incorporated into EO to achieve appropriate FS solutions. In the experiments, 25 benchmark datasets from the UCI repository are investigated to verify SQEOABC, which is compared with several state-of-the-art metaheuristic algorithms and the variants of EO. The statistical results of fitness values and accuracy demonstrate that SQEOABC has better performance than the compared algorithms and the variants of EO. Finally, a real-world FS problem from COVID-19 illustrates the effectiveness and superiority of SQEOABC.


Subject(s)
COVID-19 , Humans , Algorithms , Machine Learning
4.
Computers, Materials and Continua ; 75(1):81-97, 2023.
Article in English | Scopus | ID: covidwho-2258633

ABSTRACT

The outbreak of the pandemic, caused by Coronavirus Disease 2019 (COVID-19), has affected the daily activities of people across the globe. During COVID-19 outbreak and the successive lockdowns, Twitter was heavily used and the number of tweets regarding COVID-19 increased tremendously. Several studies used Sentiment Analysis (SA) to analyze the emotions expressed through tweets upon COVID-19. Therefore, in current study, a new Artificial Bee Colony (ABC) with Machine Learning-driven SA (ABCML-SA) model is developed for conducting Sentiment Analysis of COVID-19 Twitter data. The prime focus of the presented ABCML-SA model is to recognize the sentiments expressed in tweets made upon COVID-19. It involves data pre-processing at the initial stage followed by n-gram based feature extraction to derive the feature vectors. For identification and classification of the sentiments, the Support Vector Machine (SVM) model is exploited. At last, the ABC algorithm is applied to fine tune the parameters involved in SVM. To demonstrate the improved performance of the proposed ABCML-SA model, a sequence of simulations was conducted. The comparative assessment results confirmed the effectual performance of the proposed ABCML-SA model over other approaches. © 2023 Tech Science Press. All rights reserved.

5.
J Ambient Intell Humaniz Comput ; : 1-13, 2021 Jul 31.
Article in English | MEDLINE | ID: covidwho-2282921

ABSTRACT

The spread rate of COVID-19 is expected to be high in the wake of the virus's mutated strain found recently in a few countries. Fast diagnosis of the disease and knowing its severity are the two significant concerns of all physicians. Even though positive or negative diagnosis can be obtained through the RT-PCR test, an automatic model that predicts severity and the diagnosis will help medical practitioners to a great extend for affirming medication. Machine learning is an efficient tool that can process vast volume of data deposited in various formats, including clinical symptoms. In this work, we have developed machine learning models for analysing a clinical data set comprising 65000 records of patients, consisting of 26 features. An optimum set of features was derived from this data set by the proposed variant of artificial bee colony optimization algorithm. By making use of these features, a binary classifier is modelled with support vector machine for the screening of COVID-19 patients. Different models were tested for this purpose and the support vector machine has showcased the highest accuracy of 96%. Successively, severity prediction in COVID positive patients was also performed successfully by the logistic regression model. The model managed to predict three severity status viz mild, moderate, and severe. The confusion matrix and the precision-recall values (0.96 and 0.97) of the binary classifier indicate the classifier's efficiency in predicting positive cases correctly. The receiver operating curve generated for the severity predicting model shows the highest accuracy, 96.0% for class 1 and 85.0% for class 2 patients. Doctors can infer these results to finalize the type of treatment/care/facilities that need to be given to the patients from time to time.

6.
Ann Oper Res ; : 1-25, 2023 Feb 15.
Article in English | MEDLINE | ID: covidwho-2286084

ABSTRACT

This paper studies a new large-scale emergency medical services scheduling (EMSS) problem during the outbreak of epidemics like COVID-19, which aims to determine an optimal scheduling scheme of emergency medical services to minimize the completion time of nucleic acid testing to achieve rapid epidemic interruption. We first analyze the impact of the epidemic spread and assign different priorities to different emergency medical services demand points according to the degree of urgency. Then, we formulate the EMSS as a mixed-integer linear program (MILP) model and analyze its complexity. Given the NP-hardness of the problem, we develop two fast and effective improved discrete artificial bee colony algorithms (IDABC) based on problem properties. Experimental results for a real case and practical-sized instances with up to 100 demand points demonstrate that the IDABC significantly outperforms MILP solver CPLEX and two state-of-the-art metaheuristic algorithms in both solution quality and computational efficiency. In addition, we also propose some managerial implications to support emergency management decision-making.

7.
Electric Power Systems Research ; 216, 2023.
Article in English | Web of Science | ID: covidwho-2237351

ABSTRACT

More than one year has passed since the outbreak of a new phenomenon in the world, a phenomenon that has affected and transformed all aspects of human life, it is nothing but pandemic of COVID-19. The field of electrical energy is no exception to this rule and has faced many changes and challenges over the 2020. In this paper, by applying artificial intelligence and the integrated clustering model, by k-means technique, combined with the meta-heuristic artificial bee colony (ABC) algorithm a new methodology is presented in order to optimal positioning of the repair crew based on annual data of power grid under situation of COVID-19 to improve the reliability and resiliency of the network due to the importance of electricity for medical purposes, home quarantine, telecommuting, and electronic services. Current research benefits from real interruption data related to year 2020 in Isfahan Province (Iran), reflexing both the huge changes in patterns of power consumption and dispatching as well as novel geographical distribution of blackouts due to COVID pandemic. The temporal distribution of interruptions is very close to the uniform distribution and the geographical distribution of interruptions relative to the density of subscribers had a normal distribution. Accordingly, proposed model is implemented for clustering the spatial data of blackouts recorded during 2020. The number of clusters is equal to the number of repair teams which in this study is considered equal to three. In the next step, the average spatial coordinates of the points of each cluster are calculated, which after reviewing the geographical conditions in the geo-spatial information system (GIS), indicates the optimal point for the deployment of electrical repair crew related to that cluster. The research findings show that after using the optimal points for a month, system average interruption duration index (SAIDI) decreased by an average of 23% compared to the same period of the 2020.

8.
IEEE Access ; : 2023/01/01 00:00:00.000, 2023.
Article in English | Scopus | ID: covidwho-2234580

ABSTRACT

COVID-19 has affected many people across the globe. Though vaccines are available now, early detection of the disease plays a vital role in the better management of COVID-19 patients. An Artificial Neural Network (ANN) powered Computer Aided Diagnosis (CAD) system can automate the detection pipeline accounting for accurate diagnosis, overcoming the limitations of manual methods. This work proposes a CAD system for COVID-19 that detects and classifies abnormalities in lung CT images using Artificial Bee Colony (ABC) optimised ANN (ABCNN). The proposed ABCNN approach works by segmenting the suspicious regions from the CT images of non-COVID and COVID patients using an ABC optimised region growing process and extracting the texture and intensity features from those suspicious regions. Further, an optimised ANN model whose input features, initial weights and hidden nodes are optimised using ABC optimisation classifies those abnormal regions into COVID and non-COVID classes. The proposed ABCNN approach is evaluated using the lung CT images collected from the public datasets. In comparison to other available techniques, the proposed ABCNN approach achieved a high classification accuracy of 92.37% when evaluated using a set of 470 lung CT images. Author

9.
Expert Syst ; : e13185, 2022 Nov 03.
Article in English | MEDLINE | ID: covidwho-2233190

ABSTRACT

Coronavirus (COVID-19) is an infectious disease that has spread across the world within a short period of time and is causing rapid casualties. The main symptoms of this virus are shortness of breath, fever, cough, and a sore throat. The virus is detected through samples, such as throat swabs and sputum, taken from people who meet the possible case definition and the results are usually obtained within a few hours or a day. The development of test kits to detect the COVID-19 virus is still an open research topic, and automated and faster diagnostic tools are needed. Recent studies have shown that biomedical images can be used for COVID-19 testing. This study proposes the hybrid use of pre-trained deep networks and the long short-term memory (LSTM) for the classification of COVID-19 from contrast-enhanced chest X-rays. In the proposed system, a transformation function is applied to X-ray images first. Then, the artificial bee colony (ABC) algorithm is used to optimize the parameters obtained from the transformation function. The pre-trained deep network models and LSTM are preferred to extract features from the contrast-enhanced chest X-rays. At the final stage, COVID-19, normal (healthy), and pneumonia chest X-ray are classified using softmax. To evaluate the performance of the proposed method, the "COVID-19 radiography" dataset, which is widely used in the literature, is preferred. From the proposed model, 98.97% accuracy, 98.80% precision, and 98.70% sensitivity rates are obtained. Experimental results reveal that the proposed model provides efficient results compared to other methods. Thanks to the application of ABC-based image enhancement, increased classification of 2.5% has been achieved against other state-of-the-art models.

10.
Malaysian Journal of Fundamental and Applied Sciences ; 18(6):654-673, 2022.
Article in English | Scopus | ID: covidwho-2203537

ABSTRACT

During the SARS-CoV-2 (Covid-19) pandemic, credit applications skyrocketed unimaginably. Thus, creditors or financial entities were burdened with information overload to ensure they provided the proper credit to the right person. The existing methods employed by financial entities were prone to overfitting and did not provide any information regarding the behavior of the creditor. However, the outcome did not consider the attribute of the creditor that led to the default outcome. In this paper, a swarm intelligence-based algorithm named Artificial Bee Colony has been implemented to optimize the learning phase of the Hopfield Neural Network with 2 Satisfiability-based Reverse Analysis Methods. The proposed hybrid model will be used to extract logical information in the credit data with more than 80% accuracy compared to the existing method. The effectiveness of the proposed hybrid model was evaluated and showed superior results compared to other models. © 2022 Malaysian Journal of Fundamental and Applied Sciences.

11.
4th EAI International Conference on Multimedia Technology and Enhanced Learning, ICMTEL 2022 ; 446 LNICST:644-654, 2022.
Article in English | Scopus | ID: covidwho-2173690

ABSTRACT

Computer analysis of patients' lung CT images has become a popular and effective way to diagnose COVID-19 patients amid repeated and evolving outbreaks. In this paper, wavelet entropy is used to extract features from CT images and integrate the information of various scales, including the characteristic signals of signals with transient components. Combined with the artificial bee colony optimization algorithm, we used the advantages of fewer parameters and simpler calculation to find the optimal solution and confirm COVID-19 positive. The use of K-fold cross validation allows the data set to avoid overfitting and unbalanced data set partition in small cases. The experimental results were compared with those of WE + BBO, GLCM-SVM, GLCM-ELM and WE-Jaya. Experimental data show that this method achieves our initial expectation. © 2022, ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering.

12.
Electric Power Systems Research ; : 109022, 2022.
Article in English | ScienceDirect | ID: covidwho-2122461

ABSTRACT

More than one year has passed since the outbreak of a new phenomenon in the world, a phenomenon that has affected and transformed all aspects of human life, it is nothing but pandemic of COVID-19. The field of electrical energy is no exception to this rule and has faced many changes and challenges over the 2020. In this paper, by applying artificial intelligence and the integrated clustering model, by k-means technique, combined with the meta-heuristic artificial bee colony (ABC) algorithm a new methodology is presented in order to optimal positioning of the repair crew based on annual data of power grid under situation of COVID-19 to improve the reliability and resiliency of the network due to the importance of electricity for medical purposes, home quarantine, telecommuting, and electronic services. Current research benefits from real interruption data related to year 2020 in Isfahan Province (Iran), reflexing both the huge changes in patterns of power consumption and dispatching as well as novel geographical distribution of blackouts due to COVID pandemic. The temporal distribution of interruptions is very close to the uniform distribution and the geographical distribution of interruptions relative to the density of subscribers had a normal distribution. Accordingly, proposed model is implemented for clustering the spatial data of blackouts recorded during 2020. The number of clusters is equal to the number of repair teams which in this study is considered equal to three. In the next step, the average spatial coordinates of the points of each cluster are calculated, which after reviewing the geographical conditions in the geo-spatial information system (GIS), indicates the optimal point for the deployment of electrical repair crew related to that cluster. The research findings show that after using the optimal points for a month, system average interruption duration index (SAIDI) decreased by an average of 23% compared to the same period of the 2020.

13.
ICT Express ; 2022.
Article in English | ScienceDirect | ID: covidwho-2041789

ABSTRACT

Drones have gained increasing attention in the healthcare industry for mobility and accessibility to remote areas. This perspective-based study proposes a drone-based sample collection system whereby COVID-19 self-testing kits are delivered to and collected from potential patients. This is achieved using the drone as a service (DaaS). A mobile application is also proposed to depict drone navigation and destination location to help ease the process. Through this app, the patient could contact the hospital and give details about their medical condition and the type of emergency. A hypothetical case study for Geelong, Australia, was carried out, and the drone path was optimized using the Artificial Bee Colony (ABC) algorithm. The proposed method aims to reduce person-to-person contact, aid the patient at their home, and deliver any medicine, including first aid kits, to support the patients until further assistance is provided. Artificial intelligence and machine learning-based algorithms coupled with drones will provide state-of-the-art healthcare systems technology.

14.
Kybernetes ; 2022.
Article in English | Scopus | ID: covidwho-1909153

ABSTRACT

Purpose: Coronavirus disease (Covid-19) has created uncertainty in all countries around the world, resulting in enormous human suffering and global recession. Because the economic impact of this pandemic is still unknown, it would be intriguing to study the incorporation of the Covid-19 period into stock price prediction. The goal of this study is to use an improved extreme learning machine (ELM), whose parameters are optimized by four meta-heuristics: harmony search (HS), social spider algorithm (SSA), artificial bee colony algorithm (ABCA) and particle swarm optimization (PSO) for stock price prediction. Design/methodology/approach: In this study, the activation functions and hidden layer neurons of the ELM were optimized using four different meta-heuristics. The proposed method is tested in five sectors. Analysis of variance (ANOVA) and Duncan's multiple range test were used to compare the prediction methods. First, ANOVA was applied to the test data for verification and validation of the proposed methods. Duncan's multiple range test was used to identify a suitable method based on the ANOVA results. Findings: The main finding of this study is that the hybrid methodology can improve the prediction accuracy during the pre and post Covid-19 period for stock price prediction. The mean absolute percent error value of each method showed that the prediction errors of the proposed methods were all under 0.13106 in the worst case, which appears to be a remarkable outcome for such a difficult prediction task. Originality/value: The novelty of this study is the use of four hybrid ELM methods to evaluate the automotive, technology, food, construction and energy sectors during the pre and post Covid-19 period. Additionally, an appropriate method was determined for each sector. © 2022, Emerald Publishing Limited.

15.
12th International Conference on Broadband Communications, Networks, and Systems, BROADNETS 2021 ; 413 LNICST:112-131, 2022.
Article in English | Scopus | ID: covidwho-1626217

ABSTRACT

Educational timetabling is a fundamental problem impacting schools and universities’ effective operation in many aspects. Different priorities for constraints in different educational institutions result in the scarcity of universal approaches to the problems. Recently, COVID-19 crisis causes the transformation of traditional classroom teaching protocols, which challenge traditional educational timetabling. Especially for examination timetabling problems, as the major hard constraints change, such as unlimited room capacity, non-invigilator and diverse exam durations, the problem circumstance varies. Based on a scenario of a local university, this research proposes a conceptual model of the online examination timetabling problem and presents a conflict table for constraint handling. A modified Artificial Bee Colony algorithm is applied to the proposed model. The proposed approach is simulated with a real case containing 16,246 exam items covering 9,366 students and 209 courses. The experimental results indicate that the proposed approach can satisfy every hard constraint and minimise the soft constraint violation. Compared to the traditional constraint programming method, the proposed approach is more effective and can provide more balanced solutions for the online examination timetabling problems. © 2022, ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering.

16.
Journal of Hydrology ; 603:N.PAG-N.PAG, 2021.
Article in English | Academic Search Complete | ID: covidwho-1568844

ABSTRACT

• Hybrid ELM models (PSO-ELM, GA-ELM and ABC-ELM) were proposed for estimating ET 0 in different climate zones of China. • PSO-ELM model had the highest accuracy, followed by GA-ELM and ABC-ELM. • Hybrid ELM models outperformed standalone ELM and empirical models in different climate zones. • PSO-ELM model with T max , T min and RH obtained accurate ET 0 estimates in TCZ, SMZ and TMZ. • PSO-ELM model with only T max and T min was better performance on ET 0 estimates in MPZ. Accurate prediction of reference crop evapotranspiration (ET 0) is important for regional water resources management and optimal design of agricultural irrigation system. In this study, three hybrid models (PSO-ELM, GA-ELM and ABC-ELM) integrating the extreme learning machine model (ELM) with three biological heuristic algorithms, i.e., PSO, GA and ABC, were proposed for predicting daily ET 0 based on daily meteorological data from 2000 to 2019 at twelve representative stations in different climatic zones of China. The performances of the three hybrid ELM models were further compared with the standalone ELM model and three empirical models (Hargreaves, Priestley-Talor and Makkink models). The results showed that the hybrid ELM models (R 2 = 0.973–0.999) all performed better than the standalone ELM model (R 2 = 0.955–0.989) in four climatic regions in China. The estimation accuracy of the empirical models was relatively lower, with R2 of 0.822–0.887 and RMSE of 0.381–1.951 mm/d. The R 2 values of PSO-ELM, GA-ELM and ABC-ELM models were 0.993, 0.986 and 0.981 and the RMSE values were 0.266 mm/d, 0.306 mm/d and 0.404 mm/d, respectively, indicating that the PSO-ELM model had the best performance. When setting T max , T min and RH as the model inputs, the PSO-ELM model presented better performance in the temperate continental zone (TCZ), subtropical monsoon region (SMZ) and temperate monsoon zone (TMZ) climate zones, with R 2 of 0.892, 0866 and 0.870 and RMSE of 0.773 mm/d, 0.597 mm/d and 0.832 mm/d, respectively. The PSO-ELM model also performed in the mountain plateau region (MPZ) when only T max and T min data were available, with R2 of 0.808 and RMSE of 0.651 mm/d. All the three biological heuristic algorithms effectively improved the performance of the ELM model. Particularly, the PSO-ELM was recommended as a promising model realizing the high-precision estimation of daily ET 0 with fewer meteorological parameters in different climatic zones of China. [ FROM AUTHOR] Copyright of Journal of Hydrology is the property of Elsevier B.V. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

17.
Stoch Environ Res Risk Assess ; 36(9): 2461-2476, 2022.
Article in English | MEDLINE | ID: covidwho-1442102

ABSTRACT

As an ongoing public health menace, the novel coronavirus pandemic has challenged the world. With several mutations and a high transmission rate, the virus is able to infect individuals in an exponential manner. At the same time, Iran is confronted with multiple wave peaks and the health care system is facing a major challenge. In consequence, developing a robust forecasting methodology can assist health authorities for effective planning. In that regard, with the help of Artificial Neural Network-Artificial Bee Colony (ANN-ABC) and Artificial Neural Network- Firefly Algorithm (ANN-FA) as two robust hybrid artificial intelligence-based models, the current study intends to select the optimal model with the maximum accuracy rate. To do so, first a sample of COVID-19 confirmed cases in Iran ranging from 19 February 2020 to 25 July 2021 is compiled. 75% (25%) of total observation is randomly allocated as training (testing) data. Afterwards, an ANN model is trained with Levenberg-Marquardt algorithm. Accordingly, based on R-squared and root-mean-square error criteria, the optimal number of hidden neurons is computed as 17. The proposed ANN model is employed to develop ANN-ABC and ANN-FA models for achieving the maximum accuracy rate. According to ANN-ABC, the R- squared values of the optimal model are 0.9884 and 0.9885 at train and test stages. In respect to ANN-FA, the R-squared ranged from 0.9954 to 0.9940 at the train and test phases, which indicates the outperformance of ANN-FA for predicting COVID-19 new cases in Iran. Finally, the proposed ANN-ABC and ANN-FA are applied for simulating the COVID-19 new cases data in different countries. The results revealed that both models can be used as a robust predictor of COVID-19 data and in a majority of cases ANN-FA outperforms the ANN-ABC.

18.
Sensors (Basel) ; 21(8)2021 Apr 17.
Article in English | MEDLINE | ID: covidwho-1308431

ABSTRACT

In unmanned aerial vehicle (UAV)-aided wireless sensor networks (UWSNs), a UAV is employed as a mobile sink to gather data from sensor nodes. Incorporating UAV helps prolong the network lifetime and avoid the energy-hole problem faced by sensor networks. In emergency applications, timely data collection from sensor nodes and transferal of the data to the base station (BS) is a prime requisite. The timely and safe path of UAV is one of the fundamental premises for effective UWSN operations. It is essential and challenging to identify a suitable path in an environment comprising various obstacles and to ensure that the path can efficiently reach the target point. This paper proposes a hybrid path planning (HPP) algorithm for efficient data collection by assuring the shortest collision-free path for UAV in emergency environments. In the proposed HPP scheme, the probabilistic roadmap (PRM) algorithm is used to design the shortest trajectory map and the optimized artificial bee colony (ABC) algorithm to improve different path constraints in a three-dimensional environment. Our simulation results show that the proposed HPP outperforms the PRM and conventional ABC schemes significantly in terms of flight time, energy consumption, convergence time, and flight path.

19.
Transp Res Interdiscip Perspect ; 8: 100233, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-809276

ABSTRACT

In order to prevent the further spread of the COVID-19 virus, enclosed management of gated communities is necessary. The implementation of contactless food distribution for closed gated communities is an urgent issue. This paper proposes a contactless joint distribution service to avoid contact between couriers. Then a multi-vehicle multi-trip routing problem for contactless joint distribution service is proposed, and a mathematical programming model for this problem is established. The goal of the model is to increase residents' satisfaction with food distribution services. To solve this model, a PEABCTS algorithm is developed, which is the enhanced artificial bee colony algorithm embedded with a tabu search operator, using a progressive method to form a solution of multi-vehicle distribution routings. Finally, a variety of numerical simulations were carried out for statistical research. Compared with the two distribution services of supportive supply and on-demand supply, the proposed contactless joint distribution service can not only improve residents' satisfaction with the distribution service but also reduce the contact frequency between couriers. In addition, compared with various algorithms, it is found that the PEABCTS algorithm has better performance.

SELECTION OF CITATIONS
SEARCH DETAIL